Hierarchically self-assembled homochiral helical microtoroids

on

|

views

and

comments

[ad_1]

  • Janoschek, R. Chirality: From Weak Bosons to the A-Helix 1st edn (Springer Verlag, 1991).

  • Yashima, E. et al. Supramolecular helical methods: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their capabilities. Chem. Rev. 116, 13752–13990 (2011).

    Article 

    Google Scholar
     

  • Kim, J. Y. & Kotov, N. A. Origin of chiroptical exercise in nanorod assemblies. Science 365, 1378–1379 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Levin, A. et al. Biomimetic peptide self-assembly for useful supplies. Nat. Rev. Chem. 4, 615–634 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Forgan, R. S., Sauvage, J. P. & Stoddart, J. F. Chemical topology: advanced molecular knots, hyperlinks, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yagai, S., Kitamoto, Y., Datta, S. & Adhikari, B. Supramolecular polymers able to controlling their topology. Acc. Chem. Res. 52, 1325–1335 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W., Jin, W., Fukushima, T., Mori, T. & Aida, T. Helix sense-selective supramolecular polymerization seeded by a one-handed helical polymeric meeting. J. Am. Chem. Soc. 137, 13792–13795 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Palmer, L. C. & Stupp, S. I. Molecular self-assembly into one-dimensional nanostructures. Acc. Chem. Res. 41, 1674–1684 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Morrow, S. M., Bissette, A. J. & Fletcher, S. P. Transmission of chirality via house and throughout size scales. Nat. Nanotechnol. 12, 410–419 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cantekin, S., Balkenede, D. W. R., Smulders, M. M. J., Palmans, A. R. A. & Meijer, E. W. The impact of isotopic substitution on the chirality of a self-assembled helix. Nat. Chem. 3, 42–46 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jones, C. D. et al. Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nat. Chem. 11, 375–381 (2019).

    Article 
    CAS 

    Google Scholar
     

  • De, S. et al. Designing cooperatively folded abiotic uni- and multimolecular helix bundles. Nat. Chem. 10, 51–57 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Datta, S. et al. Self-assembled poly-catenanes from supramolecular toroidal constructing blocks. Nature 583, 400–405 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McDermott, G. et al. Crystal construction of an integral membrane light-harvesting advanced from photosynthetic micro organism. Nature 314, 517–521 (1995).

    Article 

    Google Scholar
     

  • Avrahami, E. M., Houben, L., Aram, L. & Gal, A. Advanced morphologies of biogenic crystals emerge from anisotropic development of symmetry-related sides. Science 376, 312–316 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Geng, Z. et al. Moebius strips of chiral block copolymers. Nat. Commun. 10, 4090 (2019).

    Article 

    Google Scholar
     

  • Sasaki, N. et al. Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat. Commun. 11, 3578 (2020).

    Article 

    Google Scholar
     

  • Chow, H. Y., Zhang, Y., Matheson, E. & Li, X. Ligation applied sciences for the synthesis of cyclic peptides. Chem. Rev. 119, 9971–10001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Laurent, B. A. & Grayson, S. M. Artificial approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 38, 2202–2213 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Pochan, D. J. et al. Toroidal triblock copolymer assemblies. Science 306, 94–97 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. et al. Hole nanotubular toroidal polymer microrings. Nat. Chem. 6, 97–103 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Frederix, P. W. J. M. et al. Structural and spectroscopic properties of assemblies of self-replicating peptide macrocycles. ACS Nano 11, 7858–7868 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gagnon, C. et al. Biocatalytic synthesis of planar chiral macrocycles. Science 367, 917–921 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Synthetic muscle-like operate from hierarchical supramolecular meeting of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled on the liquid–air interface. Nature 466, 474–477 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Solar, L. et al. Double-shelled hole rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as glorious photocatalysts. Nat. Commun. 10, 2270 (2019).

    Article 

    Google Scholar
     

  • Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 6, 580–587 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y. et al. Interfacial meeting of dendritic microcapsules with host–visitor chemistry. Nat. Commun. 5, 5572 (2014).

    Article 

    Google Scholar
     

  • Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Fast, large-volume, thermally managed 3D printing utilizing a cellular liquid interface. Science 366, 360–364 (2019).

    Article 

    Google Scholar
     

  • Gibaud, T. et al. Reconfigurable self-assembly via chiral management of interfacial pressure. Nature 481, 348–351 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Solar, M. & Lee, M. Switchable fragrant nanopore buildings: capabilities and purposes. Acc. Chem. Res. 54, 2959–2968 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, P. et al. Polymeric toroidal self-assemblies: numerous formation mechanisms and capabilities. Adv. Func. Mater. 32, 2106036 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ouyang, G., Ji, L., Jiang, Y., Würthner, F. & Liu, M. Self-assembled Möbius strips with managed helicity. Nat. Commun. 11, 5910 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tune, S. et al. The position of cooling price in crystallization-driven block copolymer self-assembly. Chem. Sci. 13, 396–409 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ruiz-Carretero, A. et al. Stepwise self-assembly to enhance photo voltaic cell morphology. J. Mater. Chem. A 1, 11674 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Parenti, F., Tassinari, F., Libertini, E., Lanzi, M. & Mucci, A. Π-stacking signature in NMR resolution spectra of thiophene-based conjugated polymers. ACS Omega 2, 5775–5784 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Aida, T., Meijer, E. W. & Stupp, S. I. Useful supramolecular polymers. Science 335, 813–817 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wehner, M. et al. Supramolecular polymorphism in one-dimensional self-assembly by kinetic pathway management. J. Am. Chem. Soc. 141, 6092–6107 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Babu, S. S., Praveen, V. Ok. & Ajayaghosh, A. Useful π‑gelators and their purposes. Chem. Rev. 114, 1973–2129 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Harada, N. & Nakanishi, Ok. A way for figuring out the chirality of two fragrant chromophores and absolutely the configurations of chromomycin A3 and associated antibiotics. J. Am. Chem. Soc. 91, 5896–5898 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled methods. Chem. Rev. 115, 7304–7397 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ang, T. P., Wee, T. S. A. & Chin, W. S. Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. J. Phy. Chem. B. 108, 11001–11010 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Classes from nature about photo voltaic mild harvesting. Nat. Chem. 3, 763–774 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ajayaghosh, A., Praveen, V. Ok. & Vijayakumar, C. Organogels as scaffolds for excitation vitality switch and lightweight harvesting. Chem. Soc. Rev. 37, 109–122 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wasielewski, M. R. Self-assembly methods for integrating mild harvesting and cost separation in synthetic photosynthetic methods. Acc. Chem. Res. 42, 1910–1921 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Corridor, J., Renger, T., Picorel, R. & Krausz, E. Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43. Biochim. Biophys. Acta Bioenerg. 1857, 115–128 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 09, revision D.01 (Gaussian, 2013).

  • [ad_2]

    Share this
    Tags

    Must-read

    Top 42 Como Insertar Una Imagen En Html Bloc De Notas Update

    Estás buscando información, artículos, conocimientos sobre el tema. como insertar una imagen en html bloc de notas en Google

    Top 8 Como Insertar Una Imagen En Excel Desde El Celular Update

    Estás buscando información, artículos, conocimientos sobre el tema. como insertar una imagen en excel desde el celular en Google

    Top 7 Como Insertar Una Imagen En Excel Como Marca De Agua Update

    Estás buscando información, artículos, conocimientos sobre el tema. como insertar una imagen en excel como marca de agua en Google

    Recent articles

    More like this